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I. ANALYSIS

In this section, the stiffness and compliance transformations are

computed for the following stress sign convention:

0,

0

oIL

Tre computation is carried out in a stepwise fashion to illustrate the points

of similarity of the two properties. The stress rotational transformation is

giver by the followinE matrix:

2 n2  2mn (Ox

r.2  m2  -2mK

Tey-mr. mr, r2 - e0xy

2

6i : ITOJ(Oj.

where. a

m = Cos -

n = sir n

3- p.,

". -. a " , >. , . . "./ ' ", "-V " V. p' ."- ."," " ', '.a " 'K 'K." ",K.'.



The preceding matrix also applies to strain if y/2 is used for the shear term

in the strain tensor:

gx

2 ,) (2 1T1

For the present purpose, it is more convenient to use a slight modification

of T to define a transformation matrix for engineering strain:0

Er, 2  mn E

L8 2  
m ,2  -i n 2) (

1xy -2mr. 2mn m2-n 2 Y

It is noted that the engineering strain transformation, which uses - instead

of , *2, is the negative transpose of the conventional stress transformation

matrix. Tne basic mono-piy properties in the natural directions are as

follows:

EL ~ Longitudinal Young's modulus

El - Transverse Young's modulus

GL  - Shear modulus
AT

VL - Major Poisson ratio defined as - - for load along L

: ETEL

4



The compliance and stiffness forms of Hooke's Law for stress in the ply

natural directions are as follows:

Compli ance Stiffness
0L VL oT EL L  & ELET

'L - E E -L " 2 + 2
L T , L  1 - ' L

0T VLCL ET T  &EL L

'T E E 2
T L T 1"T vL 1 - C

LTG
'LT 0 L LT GLLT

E- S(11) S(12 0 L c, (11) Q(12) -, E L o

(2: S(12) S(22) TT : Q(12) 0(22) 0 E

0LT 0 9(66) 0 L 0 YLT

E : (ij)c. : (ij ) .

.r. order to use Hoo :e's jaw in the piy natural direction, the general stresses

an. strains must be transformed to the ply natural directions. First, we

review the compliance for:

L CL x

[TJ L anaC : [T ]
y C

YL xy LT y .1"

51



Starting with Hooke's law

LT TTL L

transforming strain and stress

C 0
x x

[TC F, - [I IT] 1 a

*v xy Y

and solving for strain

E0

x x

xy xy

I s. .(WO] compliance

13 3

Equation (1) is the compliance form of Hooke's law for the anisotropic

plate. A similar analysis of the stiffness form of Hooke's law givc

T I ET

T LT "LT

6



I

Transforming the stress and strain gives

x x

IT I C 10 I £
aTO  [ Te  y

Sy xy

and solving for the stress yields the following matrix:

,y 0 [E l l y

xy) x

S  [Q 6()] E. stiffness

The preceding equation is the stiffness form of Hooke's law for the

anisotropic plate. The detailed forms of the compliance and stiffness

matrices are shown below for reference:
-.

Compliance Matrix L

Isi < ed 17 E - Is] IT "I

nS2(6)I = n2 2 mr. (12) S(22) n2  m2  -2mn

2mr -2mr. (m2- 2  0 2
)mn mn (m2n 2

75-

r
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Stiffness Matrix

IQi (8)] = I O-, IQ] ITC)

in2  n2 -2mn Q(11) Q(12) 0 M2  n2 m

IQ. (e)J n2  in2  2inn Q(12) Q(22) 0 n2 2  m
iJ

inn -inn2  m2 _n2) 0 0 (6) - 2mn m_2

Many authors [for example, Tsai (Ref. 1)] have shown compact forms for the

rotationally transformed stiffness matrix, using multiple-angle trigonometric

identities and convenient coeffients called U. The same approach is taken

here to simplify the rotationally transformed compliance matrix. In this

case, the compliance coefficients are called W. Although the individual

components have some formal similarity, there are notable detailed

differences, as may be seen in the matrix elements and coefficients for

stiffness and compliance given below:

Stiffness Compl iances

Miatrix: Elements Matrix Elements

Q(11) = U(1)+U(2)cos(26)+U(3)cos(4e) S(11) =W(1)+W(2)cos(2e)+Wk3)cos(4e)

Q(22) =U(1);U(2)cos(2@)+U(3)cos(46) S(22) =W(1);:W(2)cos(26)+W(3)cos(14e)

Qk12) =U(4+) -U(3)cos('46) S(12) =W(L4) -W(3)cos('46)

Q6)=U(2) U3cs4) S6)z4W5 W3o(e]

Q(16) = ()sin(26) +U (3)s in (46) S(16) =W(2)sin(26) +2W(3)si(L4e)

-U2)

Q(26) =-(2 sin(2e) -U(3)sin(40) S(26) =W(2)sin(26) -2W(3)sin(I46)

The forms of the preceding matrix elements are slightly different for elements with

index 66, 16, and 26.

8
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J.

Coeffici ents Coefficients

UM = 1/81'3Q(11)+3Q(22)+2Q(12)+4Q(66)] WM1 = 1/8[3S(11)+3S(22)+2S(12)+S(66)]

U(2)= 1/ [4Q 11)-Q(22 ] W 2) = 1/8[S(1 )-4S 22)

U(3)= 1/8[Q(11)+Q(22)-2Q(12)-4Q(66)] W(3)= 1/8[S(11)+S(22)-2S(12)-S(66)]

U(L4) =1/8[Q(11)+Q(22)+6Q(12)-4Q(66)] W(4) = 1/8[S(11)+S(22)+6S(12)-S(66)]

U(5)= 1/8[Q(11)+QC22')-2Q(12)+4Q(66)] W(5) = 1/8[S(11)+S(22)-2S(12)+S(66))

Also U(5) =U1U()Also W(5) =W(1) - W(4).
2 2

The forms of the preceiing coefficients are slightly different for

coefficients with index 3, 4, and 5.

9WI



II. THE TWO QUASI-ISOTROPIC ASYMPTOTES o

A. STIFFNESS-ISOTROPIC ASYMPTOTE

The parallel model, or stiffness-isotropic asymptote, corresponds to

uniform random orientation of plies in a contiguous laminate:

Q(iso) f Q(i,j,e)de
0

This well known result [see, for example Ashton et al. (Ref. 2) and Robinson

(Ref. 3)) is giver, by tne isotropic Hooke's law matrix shown below:

U( 1) U(4) 0

1-. z U(4) U(1) 0 (3)

U(1) - U(4)
2

Tne above isctro c st iffness matrix a-so results from certain lamination

patterns sicr. -s 0 :60 anc 0 90 :45. Inr terms of the mono-ply engineering

parameters i,, tne natural direct ic!, tnese stiffness matrix elements are given

nV
-.

, , 2 GL3 ~,+ r'3 + 2 v - 4 v *
SL L L E]

12 r2j

LL

11 .-1

E _L + 4 v

E E, L EL (

8|

.L "

F + 4+ 2 -v 4v2

E EL L5J 2
L 1- ~L



The stiffness-isotropic engineering parameters are given by

v = U(4),'u(1) G = U(5) E = U(1) (1 - ) (5)

B. COMPLIANCE-ISOTROPIC ASYMPTOTE

In this case we integrate compliance:

27
S(iso) f f S(i,j,e)de

o0

The resulting pseudo-isotropic compliance (series-model) Hooke's law matrix is

similar but not identical to Eq. (3):

W(1) W(4) 0 a

aIE } : W(4) W(1) 0 , (6)

0 C 4W(5

In terms of the mono-ply engineering parameters in the natural directions,

these compliarce-matrix elements are given by

W 13 3 L ]
W() + -!- - (7) I8 EL &EL EL G L

W(' 1 (7)
W( ) = [ -K - -" }EL 'L L.

W(5) + 2 L

* and the compliance-isotropic engineering parameters are given by

1 W( ) W 14)
E : - Vc Wc 4W(5) 2[W(1) - W()] (8)

c W() W(14

12



Direct formulas for the pseudo-isctrcpic moduli, in terms of the ply 1s

natural direction values, are giver, below:

Stiffness-isotropic Mode Compliance-Isotropic Model

(Parallel) (Series)

E 2L4GL 2 EL ELL

L 1 + 4 + 2 vL + "
L L G

L

84.EL

E 2G(I + v) Ec  E (9b)

3(1+)- 2 4 a +

or

E - 24G. '4G
42 ( L  2 2 2i

! ~ 2r v. 1 1 +- +, 41 -I\ 4 ,.6 L•

E L L L L L L

EL
40

40 2 ~E
1 + 2"\ ~ + E 1 L L +(c

cC EIl
31 + +) L~ ( + & - L

L E .
9

L

The above equations were usea in Tabie 1 to compute the two sets of

quasi-isotropic properties for typical fiber composite materials used irn

aerospace structures. These properties are analogous to the Voigt (parallel)

and Reuss (ser~es moiels.

13
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III. APPLICATIONS
V

Analysis of stress and strain in rectangular orthotropic materials has

uncovered a number of geometrically axisyninetric problems, in which the a,

resultant stress is axisyietric, despite the orthotropic material properties.

The corresponding strains in the cylindrical coordinate system are not

axisynetric, and of course, in the design critical material natural

directions, neither stresses nor strains are axisymmetric.

The compliance isotropic material analysis given in the previous sections I
turns out to be embedded in this class of problems. The strain energy in a

ring shaped element for conventional 2D axisymetric FE analysis is given by

(see, for example, Refs. 4 and 5)

1

1
1 1U. j dV (0

For an axisymmetric geometry d.i rdedA s

2-n
U. 4 c .. d~rdA. (11)

II

'A. o1

! 41

T 0 (0 a aS1 2 3) £2

Equation (11) can be recast in terms of the stresses by substituting the

compliance form of Hooke's law c. S..
13

U. 1 F S.o.derdA (12)
1 ~ . o 3

15

~~I *,*~~~~%*% , ,Vb % %~ N,~% .* %/ %\\A~~r



r

This formulation is a slight variation of the line followed by Parooen

(Refs. 4 and 5), who attempted to rationalize a "weighted average" elasticity

or stiffness matrix for use in axisymmetric finite-element analysis of

rectangular orthotropic material. Pardoen cast the problem in terms of the
stiffness matrix and the strains, neither of which is axisymmetric.

The case of axisymmetric stress allows Eq. (11) to be rewritten as

IN rA. 2n
u ° [f [s ]delo (13)2i - 2 oi 0

The term in brackets is the quasi-isotropic compliance matrix derived in

Section B, and, for a given orthotropic material, produces the quasi-isotropic

compliance properties as specifically defined in the matrix of Eq. (6).

Further stress analysis with this strain energy formulation is isotropic and

axisymmetric. We have, in effect, defined a fictitious or equivalent

isotropic material, with compliance-isotropic properties. Further analysis can

proceed with the use of the corresponding Ec, Cc, and vc of Eq. (8) in closed

form isotropic solutions where the stress is axisymmetric. Examples are given

below for disks or annuli of rectangular orthotropic material sub'ected to

inertial, mechanica., an: thermal loads. These were used as test cases by

Pardoen (Refs. 4 and 5).

Example 1: Rotating Disk with Rectangular Orthotropy

Stress analysis of the rotating disk of radius F witn rectangiat

orthotropy (Refs. 6 and 7) gives:

Radial stress-orthotropic analysis

2 2

oR  - 2 2 1- [ - )(

Circumferential (Hoop) stress-orthotropic analysis

22

.16
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where

1 2v xy L.L 2jx

_ E E E E(E)
x y x x y x x

Stresses in an isotropic disk (e.g., Ref. 8) are

Radial stress-isotropic

2 412'

Hoop stress-isotropic

ORL. 2  + 1 + 1 v r20H 2 ___ )( 1  2 V ) (18)
-H 2 4 + V 2R2

3 + v
The form of Eqs. (14)-(15) is identical to Eqs. (17)-(18) if 1 - 4 :

With the defirition of £ giver by Eq. (16), it turns out that this is true,

and the, "effective" Pzissor. Ratio, v, is the compliance isotropic value -%-

v given in Eq. (9c).
C ,

Thus the orthotropic factor 5 is a disguise for a pseudo-isotropic

material with compliance isotropic properties.

Example 2: Pressurized Ortnotropic Disk

The rectangular orthotropic pressurized annulus has an axisymmetric

stress state, according to Lekhnitskii (Ref. 4), if the orthotropic material

properties satisfy the following relation:

E E
g 2vy E _ :
xy xy

This may be rewritten as

1 EE x

G xy

17
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Substituting this constraint in Eqs. (9a), (9b), and (9c) for each

engineering parameter EC, Go, and v reveals that this axisymmetric solution

corresponds with an equivalent compliance isotropic material having

2E 2v
C xG E - x and vc -E xyGc xy' c Ex  cE 2

X- 2v x- 2
G xy G xy
xy xy

Note that this compliance isotropic property set defined by the above

constraint is explicitly independent of the transverse modulus.

The radial and circumferential stresses are given by the well known

Lame equatiorn for thick wall annulus (e.g., Ref. 8).

Example 3: Thermal Load on Orthotropic Disk
-.

An axisynmnetric stress distr-ibution occurs in a rectangular-orthotropic

disk subject to axisymmetric temperature of the form T(r) =T - LT(r 2/a2),

and the solution is determined for the case a a by use of the compliance
x y

isotropic modulus in the equation.s for radial and circumferential stress:
N%.'j

2
EaT r

Rac ial 01 =- ( - !-

EaAT2

Circumferential o0 4 [ (1 - 3L-
a ,V

....;.-aa

In each of the above examples, the stress is axisymmetric and may be

computed by standard isotropic formulas provided the appropriate compliance-

isotropic properties from Eq. (9) are used. The strains are not

axisynmnetric. The nonuniform strain distribution is obtained by the

orthotropic Hooke's law of Eq. (1).

The compliance integration and corresponding isotropic asymptote are

found in analysis of wrinkle defects in composite materials (Ref. 9).

18
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IV. CONCLUSIONS

Tne se3r, c isotropic asymptote of planar fiber composite mater,

deriveo from comp.iance summation, has been developed here, with rotational

matrix parameters cast in multiple angle form. The analytical form closely

resembles, but is not identical to, the stiffness isotropic matrix elements

and coefficients.

Formulas for the isotropic engineering parameters are given in terms of

the orthotropic mono-ply engineering parameters.

The compliance-isotropi properties turn up in stress analysis of

orthotroplc materia_ problems where axisyrrnetric stress occurs. Several of

tr.ese problems are given here. The approach here snows how tris class of

problems car: re moceled and analyzed as isotropic materials, often with

simple, close. form equations. This approach might be used as an

approximatior, ir: probiems wnere axisymrrrtric stress can be assumed.

1.a

I-
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